Connect with us

Artificial Intelligence: How Machine Learning is Transforming Marketing

AI Services

Technologies

Artificial Intelligence: How Machine Learning is Transforming Marketing

Artificial Intelligence: How Machine Learning is Transforming Marketing

Machine learning is one of the best fields of Computer science. Machine learning is a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed. Machine learning focuses on the development of computer programs that can teach themselves to grow and change when exposed to new data. Machine learning studies computer algorithms for learning to do stuff. We might, for instance, be interested in learning to complete a task, or to make accurate predictions, or to behave intelligently. The learning that is being done is always based on some sort of observations or data, such as examples (the most common case in this course), direct experience, or instruction. So in general, machine learning is about learning to do better in the future based on what was experienced in the past.

The emphasis of machine learning is on automatic methods. In other words, the goal is to devise learning algorithms that do the learning automatically without human intervention or assistance. The machine learning paradigm can be viewed as “programming by example.” Often we have a specific task in mind, such as spam filtering. But rather than program the computer to solve the task directly, in machine learning, we seek methods by which the computer will come up with its own program based on examples that we provide. Machine learning is a core subarea of artificial intelligence. It is very unlikely that we will be able to build any kind of intelligent system capable of any of the facilities that we associate with intelligence, such as language or vision, without using learning to get there. These tasks are otherwise simply too difficult to solve. Further, we would not consider a system to be truly intelligent if it were incapable of learning since learning is at the core of intelligence. Although a subarea of AI, machine learning also intersects broadly with other fields, especially statistics, but also mathematics, physics, theoretical computer science and more.

robot-2301646_1280

While many machine learning algorithms have been around for a long time, the ability to automatically apply complex mathematical calculations to big data – over and over, faster and faster – is a recent development. Here are a few widely publicized examples of machine learning applications you may be familiar with:

  • The heavily hyped, self-driving Google car? The essence of machine learning.
  • Online recommendation offers such as those from Amazon and Netflix? Machine learning applications for everyday life.
  • Knowing what customers are saying about you on Twitter? Machine learning combined with linguistic rule creation.
  • Fraud detection? One of the more obvious, important uses in our world today.

Most industries working with large amounts of data have recognized the value of machine learning technology. By gleaning insights from this data – often in real time – organizations are able to work more efficiently or gain an advantage over competitors.

Machine learning algorithms are often categorized as supervised or unsupervised.

  • Supervised machine learning algorithms can apply what has been learned in the past to new data using labeled examples to predict future events. Starting from the analysis of a known training dataset, the learning algorithm produces an inferred function to make predictions about the output values. The system is able to provide targets for any new input after sufficient training. The learning algorithm can also compare its output with the correct, intended output and find errors in order to modify the model accordingly.
  • In contrast, unsupervised machine learning algorithms are used when the information used to train is neither classified nor labeled. Unsupervised learning studies how systems can infer a function to describe a hidden structure from unlabeled data. The system doesn’t figure out the right output, but it explores the data and can draw inferences from data-sets to describe hidden structures from unlabeled data.
  • Semi-supervised machine learning algorithms fall somewhere in between supervised and unsupervised learning, since they use both labeled and unlabeled data for training – typically a small amount of labeled data and a large amount of unlabeled data. The systems that use this method are able to considerably improve learning accuracy. Usually, semi-supervised learning is chosen when the acquired labeled data requires skilled and relevant resources in order to train it / learn from it. Otherwise, acquiring unlabeled data generally doesn’t require additional resources.
  • Reinforcement machine learning algorithms is a learning method that interacts with its environment by producing actions and discovers errors or rewards. Trial and error search and delayed reward are the most relevant characteristics of reinforcement learning. This method allows machines and software agents to automatically determine the ideal behavior within a specific context in order to maximize its performance. Simple reward feedback is required for the agent to learn which action is best; this is known as the reinforcement signal.

Machine learning enables analysis of massive quantities of data. While it generally delivers faster, more accurate results in order to identify profitable opportunities or dangerous risks, it may also require additional time and resources to train it properly. Combining machine learning with AI and cognitive technologies can make it even more effective in processing large volumes of information.

Mr. Rakesh has spent 3+ years serving as the Digital marketing professional. His areas of expertise in online marketing are SEO, ASO and PPC. He applies smart marketing techniques to improve web or app and raise conversion rate.

Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Technologies

To Top